
MATEMATYKA STOSOWANA TOM 12/53 2011

Cryptographic techniques used
to provide integrity of digital
content in long-term storage

Problem presented by

Martin Šimka, Paweł Wojciechowski

Polish Security Printing Works (PWPW)

Executive Summary

The main objective of the project was to obtain advan-
ced mathematical methods to guarantee the verification
that a required level of data integrity is maintained in
long-term storage. The secondary objective was to pro-
vide methods for the evaluation of data loss and recovery.
Additionally, we have provided the following initial con-
straints for the problem: a limitation of additional storage
space, a minimal threshold for desired level of data inte-
grity and a defined probability of a single-bit corruption.
With regard to the main objective, the study group fo-
cused on the exploration methods based on hash values.
It has been indicated that in the case of tight constra-
ints, suggested by PWPW, it is not possible to provide
any method based only on the hash values. This observa-
tion stems from the fact that the high probability of bit
corruption leads to unacceptably large number of broken
hashes, which in turn stands in contradiction with the
limitation for additional storage space.
However, having loosened the initial constraints to some
extent, the study group has proposed two methods that
use only the hash values. The first method, based on
a simple scheme of data subdivision in disjoint subsets,

128 Providing integrity of long-term storage ESGI77

has been provided as a benchmark for other methods di-
scussed in this report. The second method (“hypercube”
method), introduced as a type of the wider class of clever-
subdivision methods, is built on the concept of rewriting
data-stream into an n-dimensional hypercube and calcu-
lating hash values for some particular (overlapping) sec-
tions of the cube.
We have obtained interesting results by combining hash
value methods with error-correction techniques. The pro-
posed framework, based on the BCH codes, appears to
have promising properties, hence further research in this
field is strongly recommended.
As a part of the report we have also presented features of
secret sharing methods for the benefit of novel distributed
data-storage scenarios. We have provided an overview of
some interesting aspects of secret sharing techniques and
several examples of possible applications.

ESGI77 Providing integrity of long-term storage 129

Report authors
Małgorzata Bladoszewska (University of Warsaw)

Tomasz Brożek (Warsaw School of Information Technology)
Michał Zając (University of Warsaw)

Contributors
Lucyna Cieślik (Polish Academy of Sciences)
Maria Donten-Bury (University of Warsaw)
Kamil Kulesza (Polish Academy of Sciences)

John Ockendon (University of Oxford)
Łukasz Stettner (Polish Academy of Sciences)
Piotr Wojdyłło (Polish Academy of Sciences)

Vladimir Zubkov (University of Oxford)

ESGI77 was jointly organised by
Systems Research Institute of the Polish Academy of Sciences
Institute of Mathematics of the Polish Academy of Sciences

Oxford Centre for Collaborative Applied Mathematics

and it was supported by
Sygnity S.A.

Industrial Development Agency Joint Stock Company

under the honorary patronage of
The British Embassy in Poland

130 Providing integrity of long-term storage ESGI77

Contents

1 Introduction .131
1.1 Problem description . 131
1.2 Problem breakdown . 132

2 Hash functions . 133
2.1 Basics .133
2.2 Restrictions on using hash functions . 134
2.3 Alternative division method . 135
2.4 Hash codes with error correction . 138

3 Secure secret sharing method . 141
3.1 Basic capabilities .141
3.2 Extended capabilities .142
3.3 Combining properties . 143
3.4 Additional considerations .144
3.5 Open questions .144

4 Conclusion and proposals for further research 144
4.1 Hash functions . 144
4.2 Secret sharing method .145
4.3 Other possibilities .146

Bibliography . 146
5 Appendix .147

5.1 Hypercube model . 147

ESGI77 Providing integrity of long-term storage 131

1 Introduction

1.1 Problem description

(1.1.1) The increase in the amount of data, both created and stored electro-
nically, entails the necessity to construct various data storage sys-
tems. In the view of different requested storage periods, we divide
systems into:
• short-term – storage period not longer than 3 years,
• medium-term – storage period between 3 and 10 years,
• long-term – storage period longer than 10 years, but with a spe-
cified end-date,

• unlimited – storage period longer than 10 years with no specified
end-date.

(1.1.2) The unlimited storage is sometimes called “eternal”. In this case
we have to pay special attention to the integrity of the stored digi-
tal content. For this reason, various digital marking techniques are
used, so that even after a long time one should be able to verify the
integrity of stored data.

(1.1.3) The main objective is to use advanced mathematical methods, espe-
cially cryptographic techniques applied in the process of digital mar-
king of the content. These techniques ought to guarantee verification
and integrity of the long-term-stored digital content.

(1.1.4) Proposed methods should take into account mainly:
• different kinds (classes) of stored content, e.g. cultural heritage,
court documentation, accounting documentation etc.,

• limitations of database size,
• anticipated frequency of access to stored resources.

(1.1.5) Another very important aspect of the problem consists of finding
the limits on applications of advanced mathematical methods, espe-
cially those based on cryptographic techniques and checking their
applicability in the evaluation of data losses (e.g. due to the „corro-
sion” of media) as well as in a potential data recovery. Original data
is marked as data in time t0, while data that might be corrupted
(because of “corrosion”) as data in time t1.

(1.1.6) Special attention should be paid to:
• Systems and schemes of coding, which allow for a detection and
correction of write errors

• Cryptographic techniques, such as:
� public-key and asymmetric encryption,
� secret sharing methods,
� secure multiparty computations.

132 Providing integrity of long-term storage ESGI77

1.2 Problem breakdown

(1.2.1) A few assumptions and constrains have been proposed by the PWPW
Representative when discussing the problem:
• T – amount of stored data,
• R – amount of additional disk space we can use, in order to provide
proof of data correctness we assume that R ≈ 0.1T ,

• r – bit error rate (BER), we assume that r is about 0.01, i.e. at
time of testing integrity of data, 1% of all bits is corrupted,

• g – accuracy of given proof of correctness, we assume that g is
about 0.01, that is our proof should show that at least T −T r−T g

T
of data is correct,

• t0 – date of storing the original data,
• t1 – date of testing the integrity of data.

(1.2.2) The problem lies in finding such a method that can be used to
determine at time t1, with given accuracy, the ratio of the correct
data, stored at time t0 to the all data available. Furthermore, it is
expected that the method allows assessing whether data is false.

(1.2.3) It would be useful if the method proved that data is not corrupted
above a certain threshold value of BER.

(1.2.4) During the talk with the PWPW Representative we made the follo-
wing assumptions and remarks:
• Errors cannot be avoided. A carrier which stores our data is im-
perfect, so we can be sure that there will be errors in data over
long time horizon.

• The bit error rate, amounting up to 1% of data, is very high. For
example, let us assume that we have a book in which every single
letter is coded with 8 bits. Due to the error ratio, we anticipate
about 1 error in every sequence of 100 bits, so in every sequence
of 12 letters we shall expect a wrong letter. Therefore, in this
paper we would like to present some solutions in which our initial
assumptions were less constrained and this ratio is assumed to be
smaller.

• Stored data is organized in files and we know the type of every
file, like document, video, audio, archive files. Nevertheless, we can
treat data as a sequence of bits (raw data approach).

(1.2.5) The PWPW Representative presented an idea of using hash func-
tions so as to provide a proof of correctness of particular parts of
data. Our work shows that the use of hash function only is not
sufficient to complete our task, so hash functions with additional
methods of correcting errors have been considered. We have also ta-
ken into account another way of dealing with hashes. It is based on

ESGI77 Providing integrity of long-term storage 133

the idea of computing a number of hashes from different divisions
of data into blocks (a.k.a. hypercube method).

(1.2.6) We do not have any information about physical properties of data
carriers, so we added an assumption of uniform distribution of errors.
If further details about distribution are available, our methods can
be calibrated to deal with it without any loss of usability.

(1.2.7) Having dealt with hash functions, we focused on a solution based
on secret sharing method. Due to time limitations, however, it could
not have been completed during the workshop. Therefore, we have
presented a helicopter view of the functionalities provided by secret
sharing schemes.

2 Hash functions

The starting point for our research was a method based on hash functions.
In this section we will show restrictions of using hash functions and describe
the main ideas of extension of such approach.

2.1 Basics

The terms and notation used in this section comes, unless stated otherwise,
from Handbook of Applied Cryptography [1].
(2.1.1) The hash function is a well known cryptographic tool, widely applied

in providing data integrity check. The idea behind its use in the
discussed problem is very simple – we compute the value of the hash
function for given data twice: at the beginning and at the end of the
storage process. If data is changed (loss of integrity), then these two
hash values would most likely differ, otherwise both values remain
the same.

(2.1.2) In a more formal way, we can say that hash function h is a function
from {0, 1}k to {0, 1}l, which has the following properties(1):
• A minor change of the input string alters the output in at least

l/2 bits.
• Probability of finding a bit-stream of the same hash value as ano-
ther given bit-stream is negligible(2).

• Probability of finding a bit-stream of a given hash value is negli-
gible.

(1) Where l < k. Secure hash functions should have the length of output l >= 256 bits.
(2) That is expected time needed to obtain two bit-streams with the same has value is
exponential to the length of output of considered function.

134 Providing integrity of long-term storage ESGI77

(2.1.3) In order to introduce the notation used in further sections, we shall
describe the integrity check process in a more formal way:
• We describe data by s and hash value by v, where v = h(s) at the
beginning of storing period (time t0).

• After storage (time t1) data may differ a little (e.g. due to the
corrosion), so we describe it by s′ and the corresponding hash
value by v′ = h(s′).

• If v = v′ then the data is correct with probability almost 1, other-
wise we conclude that data is corrupted. Unfortunately, we do
not know the percentage of corrupted bits – even if only one bit
changes, the whole block is corrupted.

2.2 Restrictions on using hash functions

(2.2.1) The use of hash functions in a way presented above has some limi-
tations. We shall present them with the following algorithm: let us
assume that we have divided data into k blocks of the same length.
For every block we compute the hash value at the beginning and at
the end of the storage period. Let us say that we have detected l
corrupted blocks (the appropriate hash values differ). Then the ratio
l/k describes the upper bound of the bit error rate.

(2.2.2) More formally, we can describe the procedure above in this way:
• We divide a sequence of bits s into blocks a1, a2, . . . , ak of the
same length.

• For i = 1, 2, ..., k we calculate and save the value vi = h(ai).
• Next, we compare it with the value v′

i = h(a′
i), that is with the

hash function value computed on the block after storage period.
If vi = v′

i, we know with probability almost 1, that there were no
corrupted bits in the part ai. In other cases we have to assume
that every bit might be corrupted.

• We compute l = |{i ∈ {1, 2, . . . , k} : vi �= v′
i}| and denote the

value l/k as b.
(2.2.3) In order to determine the usefulness of hash functions we calculate

the expected value of the ratio l/k under constraints given in (1.2.1).
Since bits are corrupted independently (as we have assumed above),
we have the following probability that i-th bit is not corrupted:

P (vi = v′
i) = (1 − r)|ai|. (1)

The expected value of the l/k reads:

E(b) =
1
k

∑k

i=1
(1 − P (vi = v′

i)) = 1 − (1 − r)|ai|. (2)

As mentioned in (2.1.2), the length of hash function output is about

ESGI77 Providing integrity of long-term storage 135

256 bits. Since the additional space for hash codes is R = 0.1T , the
length of ai for i = 1, 2, . . . , k should be at least 2560 bits long.
Therefore, in this case the expected value of bit error rate is:

E(b) = 1 − (0.99)2560 = 1 − 6.7 · 10−12 ≈ 1, (3)

which is unacceptably high.
(2.2.4) In conclusion, dividing data into disjoint blocks and computing a

hash value for each of them to check the integrity of data is not
particularly useful when assuming the constraints given in (1.2.1).
Such constrains require blocks to be quite big, which makes the
probability of block corruption equal almost 1. However, removing
some of constrains and using smaller output blocks (e.g. 100 bits
long) results in lower performance of the hash function.

2.3 Alternative division method

Introduction

(2.3.1) In Section 2.2, we have discussed the scheme of dividing data into
disjoint blocks of equal length. Naturally, this is not the only possible
approach to the given problem: a single bit needs not to be only in
one block and blocks may have different length. It transpires that
dividing data into blocks in a clever way leads to a better estimation
of a corruption ratio, so that the upper bound for the ratio is closer
to real value of ratio.

Figure 1 Example of arranging data in a square, 12 hash values
are calculated and saved – 6 for rows (v1,1, v1,2, ..., v1,6) and 6 for

columns (v2,1, v2,2, ..., v2,6).

136 Providing integrity of long-term storage ESGI77

(2.3.2) Our first step to construct such a clever division was to arrange bits
in a square (as in the Figure 1). In this case, the blocks for which we
calculate hash codes are composed as rows and columns in a square.
Therefore, each bit is included in 2 blocks (1 row and 1 column, cf.
Figure 1).

(2.3.3) At first glance, it seems to make no sense to divide data into over-
lapping blocks – blocks would need to be longer so as to satisfy
the requirement R = 0.1T , which increases the probability of cor-
rupting a hash value. Nevertheless, such an approach may provide
a very good upper limit of errors in the data if certain assumptions
are fulfilled. Consider the situation presented in the Figure 2.

Figure 2 Visualization of the given data after storage. Blocks,
for which hash value has changed, are highlighted. As every cor-
rupted bit changes the hash value either for row and column, all
potentially corrupted bits are located on the intersections of the

highlighted rows and columns.

Let p1, p2 be the percentages of corrupted hash values in respectively
rows and columns. The percentage of corrupted hash values for all
blocks equals

ph =
p1 + p2

2
(4)

However, the upper bound of corrupted bits is generally smaller and
reads:

b = p1 · p2. (5)

In the case presented in the Figure 2, ph = 0.417, b = 0.167,
r ≥ 0.083.

Generalization – the hypercube method

(2.3.4) A generalization of the method presented in (2.3.2) can be obtained
by arranging data in a d-dimensional hypercube (cf. Figure 3 for
3-dimensional case).

ESGI77 Providing integrity of long-term storage 137

Figure 3 3-dimensional hypercube consisting of 64 cells (grey).
Every cell represents 1 bit of data. Block is a subset of bits
forming a section (red, green). In this case there are 3 · 16 = 48

blocks.

In this general case, if the percentages of corrupted hash values in
dimensions 1, 2, . . . , d equal p1, p2, . . ., pd respectively, then we have
the following upper bound of bit error rate:

b = d−1
√

p1 · p2 · ... · pd. (6)

Calculations and optimization for hypercube method

(2.3.5) It was our aim to find such parameters of the hypercube that the
obtained upper bound of corrupted bits is the best (the lowest).
At the same time, we optimized the number of dimensions d and
the size (number of cells) S of the hypercube (detailed calculations
are presented in the Appendix). We decided to divide the data into
parts, each consisting of S bits, and make a hypercube for each of
them separately.

(2.3.6) For the purpose of calculating the expected value of b, we assumed
that the distribution of errors in the data is uniform and bits are
corrupted independently.

(2.3.7) We calculated that this method does not work for initial constraints:
r = 0.01, R = 0.1T and 256-bit-long hash codes. The reason for
this discovery is analogous to the one described in Section 2.2: for
large blocks the probability of corrupting its hash value is very high.
Therefore, we decided to change some of our assumptions. Firstly,
we chose r = 0.0001. Secondly, we decided to use 100-bit-long hash
codes.

Results

(2.3.8) For the assumptions made in (2.3.7), the optimal dimension of a hy-
percube is equal to 2 and each part consists of 4 · 106 bits (see
Appendix). In this method the expected value of the upper bound

138 Providing integrity of long-term storage ESGI77

of corrupted bits is smaller than 0.058. We would like to emphasize
that dividing data into disjoint blocks of bits (method described
in (2.2.1)) under the same assumptions would give the expected up-
per bound of corrupted bits equal to 0.095. The hypercube method
lowers the upper bound of errors more than 1.6 times.

Remarks & further research

(2.3.9) As indicated in (2.3.6), we assumed uniform distribution of errors in
data. We suspect that this method may work very badly for a spe-
cific distribution of errors. However, we believe that this problem is
manageable.

(2.3.10) The method is based on arranging data in a hypercube and cal-
culating hash values for sections. Generally, there might be other
acceptable ways of dividing data into blocks, giving lower expected
value of b under the same assumptions. Firstly, we can arrange data
in a hypercube and calculate hash values for other subsets of bits,
for example hyper-planes. Secondly, we can abandon the idea of the
hypercube and invent a completely different division.

(2.3.11) This method does not give a satisfying upper bound of corrupted
bits for r = 0.01, which makes it useless in some real-world appli-
cations. On the other hand, if we had a method of measuring the
level of the integrity of the data based on dividing data into blocks,
we might improve the expected value of b by dividing data e.g. in
a way presented in (2.3.4). We recommend it as a supporting tool.

2.4 Hash codes with error correction

Introduction

(2.4.1) The major limitation of the hash functions in solving the problem is
a very high probability of hash value corruption for long blocks. As
mentioned before, the analysis of the hash values enables us only to
say whether there are any corrupted bits in a block. To calculate the
upper bound, we have to assume that all bits from the block marked
as corrupted may have changed. If we recognized which blocks are
corrupted “only a bit” and which are more corrupted, then we would
be able to measure the level of the integrity of data more precisely.

(2.4.2) For the purpose of such recognition, we decided to use error cor-
recting codes. Generally, error correcting codes are bits added to
original data (or part of data), with the aim of correcting a pre-
determined number of errors. In our problem, we use them in the
following way (example in the Figure 4):

ESGI77 Providing integrity of long-term storage 139

1. We divide data into blocks and calculate hash values for each of
them.

2. We add codes correcting up to d errors to each block.
3. After storage we correct errors using error correcting codes.
4. After correction we compare saved and new hash values. If there

are more than d errors in a particular block, then stored and cal-
culated hash values differ. Otherwise, they will remain the same.
Based on the information of how many hash values are changed,
we can calculate the upper limit of corrupted bits.

Figure 4 Exemplary visualisation of the proposed method. There
are 4 blocks of 5 bits each. We add codes correcting 1 error
(grey). Some errors occur in data after storage (3.) (red). We use
codes to correct them. Finally, we calculate hash values again.
If the number of errors in a block was bigger than 1 (like in
a second block), then not all errors were corrected and the hash

value is changed.

(2.4.3) In order to grasp the significance of this method, consider a situation
presented in the Figure 4. After the storage there are 4 errors: 2 in
original data and 2 in the added bits. If we used method presented
in Section 2.2, two blocks would be corrupted. Since we use error
correcting codes, we can recognize that in the fourth block only 1 bit
has changed. Moreover, we can correct this error, which is an added
value of the method.
Furthermore, the errors which occur in added bits are also corrected.
It means that we do not need to deal with them additionally.

Theory

(2.4.4) During our research we focused only on the BCH error correcting
codes. We would like to quote the theorem, which enabled us to
make some calculations.

140 Providing integrity of long-term storage ESGI77

We will use the following terms:
• word – sequence of bits;
• coded word – a word which we would like to correct;
• control symbols – additional symbols (bits) used to correct errors
in a coded word;

• coding word – a coded word with control symbols.
(2.4.5) Below we shall present the theorem of the BCH codes (proof in [2]):

For each d, m ∈ Z+, d < 2m−2
m there exists such a BCH code that

all following statements are true:
• Coding words are 2m − 1 long.
• This code corrects d errors in a coding word.
• The number of control symbols is d · m.
This means that the length of a coded word is 2m − dm − 1.

(2.4.6) One of the most important conclusions of this theorem is that we
do not need a lot of additional space for control symbols. If the size
of a block is A, we need approximately d · logA of additional space
to correct d errors.

Results

(2.4.7) We were interested whether we overcame the major limitation of
using hash functions, so we calculated the probability of corrupting
hash value. It transpired that using error correcting codes combined
with hash functions would give satisfying upper bound of corrupted
bits for r ≈ 0.5.
We made calculations for different values of r and R and tried to
choose the best parameters m, d for them. We assumed that we know
the BCH code correcting d errors in the 2m−1 bits long coding word.
We decided to use 100-bit-long hash codes. Results are presented in
the Table 1.

Table 1. Probability of corrupting hash code depending on the values
of m, d, r, R.

m d r R Probability of corrupting hash code
16 600 1% 0.185T < 0.1%
16 357 0.5% 0.1T < 0.01%
17 678 0.53% 0.1T < 0.7%
16 357 0.53% 0.1T < 0.4%
15 187 0.53% 0.1T < 0.5%
14 96 0.53% 0.1T < 1.6%

Remarks & further research

(2.4.8) For the purpose of calculations we assumed that the distribution
of errors in the data is uniform (like in the Section 2.3). Once more

ESGI77 Providing integrity of long-term storage 141

information of error distribution is available (e.g. the specific storage
hardware is selected), obtained results can be adapted accordingly,
possibly with improved performance.

(2.4.9) The main advantage of this method is that it not only measures the
level of the integrity of stored data, but also improves it. It can also
be combined with error codes that are already used by PWPW with
the aim of enhancing performance.

(2.4.10) We would like to emphasize that the theorem (2.4.5) guarantees
only the existence of the BCH code satisfying some requirements.
We do not know whether effective algorithms of constructing such
a code or coding and decoding words exist. Moreover, it cannot be
ruled out that there are some other error correcting codes which
might be more useful in a real world application. This area is open
for further study.

3 Secure Secret Sharing Method
Having investigated hash functions, we shall now check a different approach.
Apart from ordinary verification of the integrity of long-term-stored digital
content, it might provide some additional features, namely:

• extended capabilities in: verification of the integrity, recovery of
corrupted bits, design of the access structure to the stored digital
content;

• an opportunity to optimize the PWPW’s requirements concerning
storage.

All the features listed above and many others can be provided by secret
sharing protocols. In cryptography, Secure Secret Sharing (SSS) scheme [4]
is understood as a method of the distribution of a secret among a group of
participants, all of them having their own share in the secret. The secret can
be reconstructed only when authorized participants combine their shares.

3.1 Basic capabilities
(3.1.1) By using Secret Sharing Schemes one can store data distributed in

some insecure locations in a secure(3) way [3].
(3.1.2) Threshold secret sharing. A threshold is a minimal number of partici-

pants which have to co-operate to reconstruct the secret. A scheme,
where at least t out of n players is necessary to reveal the secret

(3) In the secret sharing, there are at least two notions of security: information-theoretical
and computational security. There are significant differences between the two types, yet,
it is rather beyond the scope of this paper. In order to simplify further discussion wi-
thout losing its generality, we will simply discuss secure or perfectly secure secret sharing
schemes.

142 Providing integrity of long-term storage ESGI77

is described as a (t, n) threshold scheme. It allows placing securely
t − 1 shares outside secure locations (e.g. own trusted systems), say,
literally distribute t − 1 shares over the Internet.

(3.1.3) Schemes for which we can provide verification of the integrity of
secrets are called Verifiable Secret Sharing (VSS).

(3.1.4) A proper design of the access structure improves the functionality
of secret sharing.
• One of the simplest access structures was presented above – every
set of at least t out of n participants is allowed to reconstruct the
secret.

• More advanced structures can be implemented as follows:
� P = {P1, ..., Pn} is a set of participants taking part in sharing.
� Every family R of subsets of P can be an access structure.

• We can provide different levels of access for different participants.
For example, the main participant (PWPW) has more rights than
a trusted outsider (e.g. governmental institutions), which in turn
has more rights than a not trusted participant (e.g. ones using
shares from the Internet).

Example 1 (generalised access structure)
Our task is to guarantee verification of the integrity of long-term-
stored digital content. For example, let us consider recordings of
speeches of famous politicians. One can distribute a secret among
some governmental institutions and set the condition under which
the secret can be revealed, e.g. at least 5 institutions from 5 different
ministries have to collaborate in order to reconstruct the secret and
so on.

By using additional participants with different levels of privileges we can
minimise the probability of leaking or losing the data.

3.2 Extended capabilities

(3.2.1) Now extended capabilities of secret sharing schemes shall be presen-
ted.

(3.2.2) Pre-positioned secret sharing. A pre-positioned secret sharing is an
example of an access structure where all data requested to recon-
struct the secret is known except for a single crucial share which has
to be given later. For example, the PWPW can distribute the whole
data over the Internet by a pre-positioned secret sharing scheme
with a short, crucial share kept locally. Let us explore a difference
between secret sharing and simple encryption of data in this model.
The advantages will be clear once more extended capabilities are
outlined.

ESGI77 Providing integrity of long-term storage 143

Example 2 (scheme with an activating share)
Let us assume that we have a situation described in the Example 1 –
data is stored locally on the servers of PWPW and in a few places all
over the world – in the United States, China, Russia etc. By means
of a pre-positioned scheme foreign institutions can partake in given
shares (a share made out of a share is called a subshare) beyond
unauthorised participants who cannot reconstruct institutional sha-
res until foreign and trusted parties cooperate, because their shares
are crucial.

(3.2.3) Proactive Secret Sharing (PSS) has the following features:
• One can change (periodically renew) participants’ shares in a se-
cret without revealing or changing it.

• One can recover corrupted shares (these shares correspond to di-
shonest participants). In our case, we can periodically check the
consistency of shares and recover corrupted ones. Another reason
to use pro-active secret sharing is the fact that if we find a corrup-
ted share during the verification process (by e.g. VSS scheme), we
can easily replace a broken share with a correct one. So there is
a simple way to “maintain” integrity of shares periodically, which
implies integrity of data.

(3.2.4) Multi-secret shares have the following features:
• A scheme where any subset of set of participants shares another
secret is available.

• It seems that a single share can be used in a few secrets, optimizing
storage space.

Example 3 (multi-secret scheme)
In the presented case we can use a multi-secret scheme. We do not
need to create a separate shares and secrets for all files. We can
make just a single sharing scheme with such a property that diffe-
rent subsets of foreign institutions can reconstruct speeches of diffe-
rent politicians and all speeches reconstructed in this way make up
a collection.

3.3 Combining properties
(3.3.1) One of the most desired properties of secret sharing schemes is its

flexibility in combining functionalities described above. Further re-
search is required to describe which properties can be combined with
each other.

(3.3.2) In our case – we might conduct research aimed at developing a scheme
which is e.g.
• perfectly secure, pro-active, integrity-providing and activated by
a share from the PWPW.

144 Providing integrity of long-term storage ESGI77

• a multi-secret scheme where any subset of participants has its own
secret that cannot be revealed without the share from the PWPW.

(3.3.3) A scheme with combined properties is not necessarily a textbook
material available right away, but has to be carefully engineered
instead. Hence, some additional work might be required before im-
plementation.

3.4 Additional Considerations

(3.4.1) Reconstructing original data from shares might occasionally need
some computational effort and data may not always be available in
real-time. Still, task complexity is polynomial in time, yet, usually
feasible in practice.

(3.4.2) It seems that once a perfectly secure secret sharing scheme is ap-
plied, its users should be protected against future developments in
cryptoanalysis, which would affect the cryptography based on com-
putational complexity (e.g. most of the employed public-key cryp-
tosystems like RSA).

3.5 Open questions

(3.5.1) As described above, the secret sharing schemes provide many tools to
deal with the PWPW problem. Still, there are some open questions
that definitely need further investigation:
• Which verification techniques are optimal in solving the problem
of corrupted shares and data in the case of digital content of the
PWPW interest? One should remember that by using secret sha-
ring scheme, we can provide some verification based on secure
multi-party computations.

• Further effort should be expended to design an optimal access
structure for particular types of stored files.

• Various types of files have different data that is crucial to their
consistency. It seems that we do not necessarily need to protect
the whole data, but only some crucial parts. It is worth considering
which fragments are really important for each type of files. If we
made this classification, we would be able to protect crucial parts
only by means of secret sharing.

4 Conclusion and proposals for further research

4.1 Hash functions

(4.1.1) Let us recall the method proposed in Section 2.2. We divided data

ESGI77 Providing integrity of long-term storage 145

into disjoint blocks of the same length and compared two hash values
for each of them – the first value was computed before the storage,
the second – after the storage. This method was not considered as a
good way of dealing with the given problem – the probability that
a block will be recognised to be corrupted is almost 1.

(4.1.2) With some additional assumptions, like limited data size and smal-
ler bit error rate, we have shown that dividing data into blocks in
a clever way may improve the estimation of corrupted bits ratio.
However, due to its limitations, this method should be applied only
as a supporting tool.

(4.1.3) Hash functions combined with error correction methods may provide
very good error estimation. Under given constraints concerning the
bit error rate and the maximal amount of additional data, there is a
probability of only 0.0001 that not every error in a single code word
will be corrected.

(4.1.4) One of the most convenient cases, for which we can prove that the
upper bound of the number of corrupted bits is small, is when errors
are uniformly distributed. Nevertheless, we believe that errors occur
rather in blocks, in particular parts of carrier of data etc., but not
uniformly. The question is – can we reorganize the bits to make the
distribution of errors uniform?

4.2 Secret sharing method

(4.2.1) Secret sharing method is an alternative way of thinking about data
storing. It provides a number of new functionalities which allow
storing of data divided among some local (trusted) participants and
some untrusted parties (like public FTP servers or in general ‘the
Internet’) in a secure way.

(4.2.2) Different participants taking part in data sharing can enjoy a diffe-
rent level of privileges in data access and recovery. It is important to
determine how many levels of privileges should be designed and how
many participants should be on each level. It seems that almost any
access structure can be implemented by using the secret sharing.

(4.2.3) In many secret sharing methods we assume that shares stored locally
(trusted participants) are at least of the size of secret. It is worth
investigating whether it is possible to deliver a method which would
be both: secure and space-saving (i.e. local shares are smaller than
a secret). We believe that such schemes can be obtained.

(4.2.4) An important property of secret sharing schemes is verifiability of
shares. It is especially crucial in our problem, in which we deal with
corrupted data, as verification protocols can play a role of correcting

146 Providing integrity of long-term storage ESGI77

codes. It is worth exploring which of them would be optimal in our
problem.

(4.2.5) Different secret sharing schemes have various properties. We have
described properties of schemes which are: pro-active (we can perio-
dically change participants’ shares), pre-positioned (there is a cru-
cial share without which a secret cannot be revealed), multi-secret
(a few different secrets are shared) or verifiable (we can determine
which shares were corrupted and reveal a secret without them). The
question is: which of the mentioned properties can be combined?

4.3 Other possibilities

(4.3.1) In this section, we will outline an additional approach, which was
discussed after the 77th ESGI, nevertheless it is worth further rese-
arch. There are check-digit schemes that allow determining whether
a bit-stream was corrupted over a certain threshold, say, 1% of bits
were changed. Should this be a case, the check-digit scheme provides
information that corruption has occurred. Usually the threshold can
be set individually for a particular application. Furthermore, since
the main task of the scheme is error detection not error correction,
usually less additional information is stored (shorter checksum) than
in error correction codes. In general, the length of the checksum can
even decreased further, should statistical reasoning be introduced,
for instance it is allowed that in a small number of cases scheme
sensitivity is different from the set threshold (not necessarily lo-
wer). In such a situation, it is even possible to decrease the ration
of checksum’s size to the size of information stored with the incre-
asing volume of information. A good example of such construction
is graph colouring based on the check-digit scheme described in [5].
It is recommended to research applications of check-digit schemes
with the characteristics outlined above for the purpose of the pro-
blem presented by PWPW and to revaluate results already obtained
for hash functions as well as to investigate a joined use of check-digit
schemes with secret sharing methods.

Bibliography

[1] Menzes, A.J., van Oorschot, P., Vanstone, S.A., Handbook of Applied
Cryptography, http://www.cacr.math.uwaterloo.ca/hac/ (link active:
2010/10/17).
[2] Lipski, W., Marek, W., Analiza kombinatoryczna. Biblioteka Matema-
tyczna PWN, Warszawa, 1986.

ESGI77 Providing integrity of long-term storage 147

[3] Cramer, R., Damg̊ard, I., Nielsen, J.B., Multiparty Computation, an In-
troduction, Contemporary Cryptology (Catalano/ Cramer/ Damgaard/ Di-
Crescenzo/ Pointcheval/ Takagi), Advanced Courses in Mathematics CRM
Barcelona, Birkhauser, 2005.
[4] Shamir, A., How to share a secret, Communications of the ACM 22 (11),
pp. 612–613, 1979.
[5] Kulesza, K., Kotulski, Z., On a Check-Digit Method Based On Graph
Coloring, Proceeding of IEEE International Conference on “Computer as
a Tool”, EUROCON 2007, Warsaw, September 9–12, pp. 214–217, IEEE
eXpolre.

5 Appendix

5.1 Hypercube model

Introduction

(5.1.1) In this paragraph we will present detailed calculations for the spe-
cific clever division based on a hypercube (the respective idea and
visualization are presented in Section 2.3).

Specification

(5.1.2) We will use the following notation: the dimension of hypercube H
is d. Every bit (cell) has d coordinates (x1, x2, x3, . . . , xd). The size
of data S = 10t, so the side length of hypercube is 10t/d.

(5.1.3) A section in H is a set of 10t/d cells such that (d − 1) of their coor-
dinates are the same. Sections are parallel to axes. Section parallel
to i-th axis and meeting point (x1, x2, ..., xd) is defined below:

Si (x1, x2, ..., xd) ={
(x1, x2, ..., xd) ∈ H:(x1 = x1) ∧ (x2 = x2) ∧ ...
.... ∧ (xi−1 = xi−1) ∧ (xi+1 = xi+1) ∧ ... ∧ (xd = xd)

}
(7)

Dependences

(5.1.4) Before stating anything about the hypercube method, we shall di-
scuss the main dependences between different values describing the
method, such as: additional space R to remember hash values, the
size of data S = 10t, the dimension of the hypercube d and so on.

(5.1.5) Firstly, we will calculate how much of additional space is necessary
to remember the hash values. Every cell is in d sections and there
are 10t cells. Every section consists of 10t/d cells. As a result, the

148 Providing integrity of long-term storage ESGI77

total amount of sections in H is:
d · 10t

10t/d
= d · 10t· d−1

d . (8)

Since we use 100 bits long hash values, we need additional space
equal to: R = d · 10t· d−1

d +2

(5.1.6) It is also necessary to know the maximal amount of errors in data,
if there is a given amount of wrong hash codes. Suppose there are
k errors in hash codes. Let (k1, k2, . . . , kd) be the number of wrong
hash codes in the first, second, . . . and d-th direction respectively.
The following upper bound of errors in the data would be:

b ≤
d−1

√
k1 · k2 · ... · kd

10t
. (9)

Moreover, it is easy to show that:

k1 · k2 · ... · kd ≤
(

k

d

)d

. (10)

It means that if there are k wrong hash codes:

b ≤
(

k
d

) d
d−1

10t
. (11)

The last thing we need is the maximal amount of wrong hash codes,
if there are l corrupted bits. Every bit may corrupt d hash codes, so
the maximal amount of corrupted hash codes is

l · d. (12)

Optimization

(5.1.7) Suppose that after storage there are 10t−4 errors in the data (in
other words: r = 0.0001). Due to (12), we know that these bits are
corrupted at most d · 10t−4 hash codes. With the information that
at most d · 10t−4 hash codes are wrong, we may calculate (from (11))
that:

b ≤
(

d·10t−4

d

) d
d−1

10t
. (13)

We would like to know that not all of the bits are corrupted (b ≤ 1),
so t and d must satisfy the inequalities:

(
d · 10t−4

d

) d
d−1

< 10t, (14)

t < 4d. (15)
Obviously, the lower t, the more precise we might be.

ESGI77 Providing integrity of long-term storage 149

(5.1.8) As R = 0.1T = 10t−1, we can create additional inequality for t and d

d · 10t d−1
d +2 ≤ 10t−1, (16)

d(log10d + 3) ≤ t. (17)
So t and d must satisfy:

d(log10d + 3) ≤ t < 4d. (18)

For t < 40 such d can be found. As indicated before, the lower t,
the more precise we are. We decided to choose

t = d(log10d + 3). (19)

(5.1.9) We would like to find the value of d which would make our predic-
tion more precise. The first step was to find d, such that interval
(d(log10d + 3), 4d) is as big as possible. We defined function

g(d) = d(1 − log10d) (20)

and found its maximum, which is approx. 3.7. Then we checked
values of d such as 2, 3, 4, 5 and calculated that prediction is the
most precise when d = 2.

(5.1.10) We decided to prove that prediction is the most precise when d = 2
• Case d = 2

t = 2(log102 + 3) ≈ 6.6 (21)

(106.6−4)
2

2−1 = 105.2 – the possible number of errors.
105.2

106.6 ≈ 0.0398 < 4% – the maximal ratio of corrupted data.

• Other cases (d �= 2).
We calculated that the possible percentage of corrupted data is
equal to

10
t−4d
d−1 . (22)

We would like it to be as small as possible. We calculated that for
d > 1 this function increases, so the optimum is d = 2.

(5.1.11) We would like to emphasize, that b < 0.04 only if r = 0.0001. We
calculated (using computer), that if E(r) = 0.0001 and bits corrupt
independently with probability 0.0001, then E(b) < 0.058.

(5.1.12) Note that dividing data in exclusive blocks of bits would give
a worse expected upper bound of corrupted bits, equal to 0.095.

150 Providing integrity of long-term storage ESGI77

Akronim: STORAGE
Tytuł: Wykorzystanie technik kryptograficznych w proce-
sach zapewniania wierności zasobów cyfrowych podlegają-
cych „wieczystemu” (długotrwałemu) przechowywaniu

Opis tematu (sformułowanie firmy/instytucji zlecającej):

Wzrastająca ilość informacji tworzonej i/lub gromadzonej elektronicznie po-
ciąga za sobą potrzebę konstruowania systemów o różnych okresach ich prze-
chowywania. Ze względu na okres przechowywania systemy te dzielą się na
systemy zapewniające:
• przechowywanie krótkoterminowe – na okres poniżej trzech lat (np. w sys-
temach billingowych, Internecie),

• przechowywanie średnioterminowe – na okres od 3 do 10 lat (np. dane
podatkowe),

• przechowywanie długoterminowe – na okres powyżej 10 lat, ale z określo-
nym końcowym terminem tego okresu,

• przechowywanie bezterminowowe – na okres powyżej 10 lat, bez oznacze-
nia końcowego terminu tego okresu (np. dane historyczne, dane rządowe,
rejestracje audiowizualne, rodzinne archiwa osób prywatnych, itp.).

Bezterminowe przechowywanie danych nazywane jest umownie przechowy-
waniem „wieczystym”. W przypadku przechowywania wieczystego szczegól-
nego znaczenia nabiera kwestia wierności (integralności) przechowywanych
zasobów cyfrowych. Z tego powodu konieczne jest poddawanie zbiorów da-
nych cyfrowych przeznaczonych do wieczystego przechowywania operacji ce-
chowania w wyniku której możliwa jest, nawet po wielu latach, weryfikacja
zachowania integralności (wierności) przechowywanych danych cyfrowych.
Problemem, który stanowi zadanie dla uczestników 77th ESGI, jest zbadanie
możliwości wykorzystania zaawansowanych metod matematycznych, w tym
zwłaszcza wykorzystujących techniki kryptograficzne, w procesach cecho-
wania zasobów cyfrowych pod kątem zagwarantowania możliwości weryfika-
cji integralności długotrwale przechowywanych zasobów cyfrowych. Problem
ten powinno się rozważyć biorąc pod uwagę rodzaje (klasy) przechowywa-
nych zasobów (np. dobra kultury, dokumentacje procesów sądowych, do-
kumenty księgowe, itd.), objętości zasobów, intensywności dostępu do tych
zasobów. Bardzo ważnym aspektem tego problemu jest określenie granic sto-
sowania zaawansowanych metod matematycznych, w tym zwłaszcza opar-
tych na technikach kryptograficznych, oraz możliwości tych metod w zakre-
sie diagnozy zakresu ubytków długotrwale przechowywanych danych (np. na
skutek „korozji” nośników) oraz możliwości odtwarzania tych ubytków.
Szczególną uwagę należy zwrócić na:

ESGI77 Providing integrity of long-term storage 151

• Systemy i schematy kodowania umożliwiające detekcję i korektę błędów
zapisu;

• Techniki kryptograficzne, a zwłaszcza: klucz publiczny i szyfrowanie asy-
metryczne oraz metody dzielenia sekretu i prowadzenia bezpiecznych ob-
liczeń wielopodmiotowych.

